[McDermott] Investigation of thermo-hydro-mechanical processes in deep crystalline rock - experiments and numerical modeling

German Title: Investigation of thermo-hydro-mechanical processes in deep crystalline rock - experiments and numerical modeling

Abbreviation: 138

Current Status: completed


Main Applicant:Dr. Christopher I. McDermott


Resources Recipient

Prof. Dr. Martin Sauter


Other Persons


Conveyor Begin:
Conveyor End:
Conveyor Duration:
Year: 2002


Description

Quantification of thermal, hydraulic and geomechanic, probably coupled, processes is very important for the understanding and characterization of natural as well as man-made processes in geosystems. The general target of this project is twofold: The analysis of processe in deep crystalline rock by employing computer modeling and experimental techniques. Modeling techniques will be used for experimental design as well as the general analysis of the flow, transport and deformation processes and finally for long-term preditions of geothermal reservoir behavior. In particular we are interested in the impact of thermo-hydromechanical processes at the reservoir scale (e.g. consolidation during hydraulic testing and thermo-mechanical effects). The modeling approach is holistic i.e. it includes thermal (RFHTM), hydraulic (RF-SM) and mechanical (RM-DM) simulation components. The software development is based on the own object-oriented computer system RockFlow/ RockMech (RF/RM). The experimental program comprises tracer tests (heat and reactive tracer) and later on hydraulic stimulation tests. The tracer experiments are intended for a quantitative characterization of the hydraulically active fracture system. Stimulation tests will be conducted to improve the hydraulic permeability in deep rocks, finally, to increase the potential for geothermal energy utilization. The holistic model approach is accessible to other work groups, who can use all available data to re-calibrate and compare models and to improve its predictability. Within this project it is intended to develop a modeling and experimental technology that will be useable for the investigation of other geothermal sites (e.g. Urach), too.